Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 103, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570866

RESUMO

BACKGROUND: Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS: The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS: MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS: Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.


Assuntos
Benzamidas , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Triazinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Mesotelina , Neoplasias Pulmonares/patologia , Proteínas Ligadas por GPI/metabolismo , Crizotinibe , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia
2.
Clin Transl Med ; 13(10): e1433, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37830128

RESUMO

BACKGROUND: Aggressive brain tumours, whether primary gliomas or secondary metastases, are characterised by hypervascularisation and are fatal. Recent research has emphasised the crucial involvement of endothelial cells (ECs) in all brain tumour genesis and development events, with various patterns and underlying mechanisms identified. MAIN BODY: Here, we highlight recent advances in knowledge about the contributions of ECs to brain tumour development, providing a comprehensive summary including descriptions of interactions between ECs and tumour cells, the heterogeneity of ECs and new models for research on ECs in brain malignancies. We also discuss prospects for EC targeting in novel therapeutic approaches. CONCLUSION: Interventions targeting ECs, as an adjunct to other therapies (e.g. immunotherapies, molecular-targeted therapies), have shown promising clinical efficacy due to the high degree of vascularisation in brain tumours. Developing precise strategies to target tumour-associated vessels based on the heterogeneity of ECs is expected to improve anti-vascular efficacy.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Células Endoteliais/patologia , Neoplasias Encefálicas/terapia , Neovascularização Patológica/tratamento farmacológico , Glioma/terapia , Glioma/patologia
3.
J Transl Med ; 21(1): 547, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587486

RESUMO

BACKGROUND: Resistance to pemetrexed (PEM), a rare chemotherapeutic agent that can efficiently cross the blood-brain barrier, limits the therapeutic efficacy for patients with lung cancer brain metastasis (BM). Aldo-keto reductase family 1 B10 (AKR1B10) was recently found to be elevated in lung cancer BM. The link between AKR1B10 and BM-acquired PEM is unknown. METHODS: PEM drug-sensitivity was assessed in the preclinical BM model of PC9 lung adenocarcinoma cells and the BM cells with or without AKR1B10 interference in vitro and in vivo. Metabolic reprogramming of BM attributed to AKR1B10 was identified by chromatography-mass spectrometry (GC-MS) metabolomics, and the mechanism of how AKR1B10 mediates PEM chemoresistance via a way of modified metabolism was revealed by RNA sequencing as well as further molecular biology experimental approaches. RESULTS: The lung cancer brain metastatic subpopulation cells (PC9-BrM3) exhibited significant resistance to PEM and silencing AKR1B10 in PC9-BrM3 increased the PEM sensitivity in vitro and in vivo. Metabolic profiling revealed that AKR1B10 prominently facilitated the Warburg metabolism characterized by the overproduction of lactate. Glycolysis regulated by AKR1B10 is vital for the resistance to PEM. In mechanism, AKR1B10 promoted glycolysis by regulating the expression of lactate dehydrogenase (LDHA) and the increased lactate, acts as a precursor that stimulates histone lactylation (H4K12la), activated the transcription of CCNB1 and accelerated the DNA replication and cell cycle. CONCLUSIONS: Our finding demonstrates that AKR1B10/glycolysis/H4K12la/CCNB1 promotes acquired PEM chemoresistance in lung cancer BM, providing novel strategies to sensitize PEM response in the treatment of lung cancer patients suffering from BM.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Pemetrexede , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Aldo-Ceto Redutases , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Pulmonares/tratamento farmacológico , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico
4.
ACS Biomater Sci Eng ; 9(6): 3116-3133, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37098133

RESUMO

Tumor metastasis is a multiple cascade process where tumor cells disseminate from the primary site to distant organs and subsequently adapt to the foreign microenvironment. Simulating the physiology of tumor metastatic events in a realistic and three-dimensional (3D) manner is a challenge for in vitro modeling. 3D bioprinting strategies, which can generate well-customized and bionic structures, enable the exploration of dynamic tumor metastasis process in a species-homologous, high-throughput and reproducible way. In this review, we summarize the recent application of 3D bioprinting in constructing in vitro tumor metastatic models and discuss its advantages and current limitations. Further perspectives on how to harness the potential of accessible 3D bioprinting strategies to better model tumor metastasis and guide anti-cancer therapies are also provided.


Assuntos
Bioimpressão , Neoplasias , Humanos , Bioimpressão/métodos , Impressão Tridimensional , Neoplasias/terapia , Microambiente Tumoral
5.
Clin Transl Med ; 11(9): e517, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34586745

RESUMO

BACKGROUND: Platinum-based chemotherapy is effective in inducing shrinkage of primary lung cancer lesions; however, it shows finite therapeutic efficacy in patients suffering from brain metastasis (BM). The intrinsic changes of BM cells, which contribute to the poor results remain unknown. METHODS: Platinum drug-sensitivity was assessed by utilizing a preclinical BM model of PC9 lung adenocarcinoma cells in vitro and in vivo. High consumption of glutathione (GSH) and two associated upregulated proteins (GPX4 and GSTM1) in BM were identified by integrated metabolomics and proteomics in cell lines and verified by clinical serum sample. Gain-of-function and rescue experiments were implemented to reveal the impact and mechanism of GPX4 and GSTM1 on the chemosensitivity in BM. The interaction between GPX4 and GSTM1 was examined by immunoblotting and immunoprecipitation. The mechanism of upregulation of GPX4 was further uncovered by luciferase reporter assay, immunoprecipitation, and electrophoretic mobility shift assay. RESULTS: The derivative brain metastatic subpopulations (PC9-BrMs) of parental cells PC9 developed obvious resistance to platinum. Radically altered profiles of BM metabolism and protein expression compared with primary lung cancer cells were described and GPX4 and GSTM1 were identified as being responsible for the high consumption of GSH, leading to decreased chemosensitivity by negatively regulating ferroptosis. Besides, GSTM1 was found regulated by GPX4, which was transcriptionally activated by the Wnt/NR2F2 signaling axis in BM. CONCLUSIONS: Collectively, our findings demonstrated that Wnt/NR2F2/GPX4 promoted acquired chemoresistance by suppressing ferroptosis with high consumption of GSH. GPX4 inhibitor was found to augment the anticancer effect of platinum drugs in lung cancer BM, providing novel strategies for lung cancer patients with BM.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Platina/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/genética , Glutationa/metabolismo , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
6.
J Transl Med ; 19(1): 118, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33743739

RESUMO

Glucose-regulating protein 78 (GRP78) is a molecular chaperone in the endoplasmic reticulum (ER) that promotes folding and assembly of proteins, controls the quality of proteins, and regulates ER stress signaling through Ca2+ binding to the ER. In tumors, GRP78 is often upregulated, acting as a central stress sensor that senses and adapts to changes in the tumor microenvironment, mediating ER stress of cancer cells under various stimulations of the microenvironment to trigger the folding protein response. Increasing evidence has shown that GRP78 is closely associated with the progression and poor prognosis of lung cancer, and plays an important role in the treatment of lung cancer. Herein, we reviewed for the first time the functions and mechanisms of GRP78 in the pathological processes of lung cancer, including tumorigenesis, apoptosis, autophagy, progression, and drug resistance, giving a comprehensive understanding of the function of GRP78 in lung cancer. In addition, we also discussed the potential role of GRP78 as a prognostic biomarker and therapeutic target for lung cancer, which is conducive to improving the assessment of lung cancer and the development of new therapeutic interventions.


Assuntos
Proteínas de Choque Térmico , Neoplasias Pulmonares , Apoptose , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Chaperonas Moleculares/metabolismo , Microambiente Tumoral , Resposta a Proteínas não Dobradas
7.
Front Bioeng Biotechnol ; 8: 612091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415100

RESUMO

Anti-tumor drugs can effectively shrink the lesions of primary lung cancer; however, it has limited therapeutic effect on patients with brain metastasis (BM). A BM preclinical model based on a multi-organ microfluidic chip has been established proficiently in our previous work. In this study, the BM subpopulation (PC9-Br) derived from the parental PC9 cell line was isolated from the chip model and found to develop obvious resistance to antineoplastic drugs including chemotherapeutic agents (cisplatin, carboplatin, pemetrexed) and tyrosine kinase inhibitors (TKIs) which target epidermal growth factor receptor (EGFR); this suggested that the acquisition of drug-resistance by brain metastatic cells was attributable to the intrinsic changes in PC9-Br. Hence, we performed proteomic and revealed a greatly altered spectrum of BM protein expression compared with primary lung cancer cells. We identified the hyperactive glutathione (GSH) metabolism pathway with the overexpression of various GSH metabolism-related enzymes (GPX4, RRM2, GCLC, GPX1, GSTM4, GSTM1). Aldehyde dehydrogenases (ALDH1A1, ALDH3A1) were also found to be upregulated in BM. What's more, loss of EGFR and phosphorylated EGFR in PC9-Br gave reasons for the TKIs resistance. Collectively, our findings indicated potential mechanisms for the acquirement of drug resistance occurred in BM, providing new strategies to overcome therapeutic resistance in lung cancer BM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...